
Compiler-level Implementation of Single Event
Upset Errors Mitigation Algorithms

Adam Piotrowski, Szymon Tarnowski
Department of Microelectronic and Computer Science

Technical University of Łódź

ul. Wólczańska 221/223

90-924 Łódź, Poland

email: komam@dmcs.pl

Abstract—Single Event Upset is a common source of failure
in microprocessor-based systems working in environment with
increased radiation level especially in places like accelerators and
synchrotrons, where sophisticated digital devices operate closely
to the radiation source. One of the possible solutions to increase
the radiation immunity of the microprocessor systems is a strict
programming approach known as the Software Implemented
Hardware Fault Tolerance. Unfortunately, a manual implementa-
tion of SIHFT algorithms is difficult and can introduce additional
problems with program functionality caused by human errors.
In this paper author presents new approach to this problem,
that is based on the modifications of the source code of the C
language compiler. Protection methods are applied automatically
during source code processing at intermediate representation of
the compiled program.

Index Terms—Software implemented hardware fault tolerance,
Compilation techniques, Table protection algorithm, Single event
upset, Radiation tolerant system, Radiation environment

I. INTRODUCTION

Soft error or hardware transient fault appears in electronic

device when highly energized particle strikes sensitive region

of circuit. This phenomena can cause no observable effects,

transient disruption of the system operations or a change of

logic state in data stored in the memory cells. Soft errors do

not permanently damage the hardware, but cause unpredictable

behavior of computer-based systems and consequently lead

to loss of functionality. They are a source of problems in

electronics working not only in a radioactive environment

like accelerators or cosmic space, but also at a terrestrial

altitude [1], [2]. According to the National Aeronautics and

Space Administration (NASA) ”radiation induced errors in

microelectronic circuits caused when charged particles lose

energy by ionizing the medium through which they pass,

leaving behind a wake of electron-hole pairs [3]” are known

as SEU’s - Single Event Upsets. A change of single bit,

induced by the radiation is called SBU - Single Bit Upset.

On the other hand, if more than one bit was affected a

Multi Bit Upset (MBU) has occurred. Effects when several

SEUs lead to disruption of system functionality are called

SEFIs - Single Event Functional Interrupts. Besides artificial

radiation environments like accelerators or nuclear reactors

three natural sources can cause soft errors: alpha particles from

natural radioactive impurities in the device materials, high

energy cosmic rays, and secondary radiation induced from the

interaction of cosmic rays and boron [4], [5].

Semiconductor devices are more and more sensitive to the

radiation because of increasing demand for higher density and

lower voltage. Therefore, the problem of radiation influence

has to be taken into consideration during each stage of the

system development. Several techniques to protect devices

from soft errors have been designed. Four main group of

radiation mitigation techniques can be distinguished:

• hardening on the design stage,

• shielding,

• techniques implementing radiation-tolerant solutions at

the circuit or system level,

• strict programming approach to fault tolerance called

Software Implemented Hardware Fault Tolerance.

Detail analyze of three first methods is beyond the scope of

this paper therefore next subsections address only software-

based radiation protection algorithms.

II. SOFTWARE-BASED RADIATION PROTECTION

Software-based radiation protection techniques are intro-

duced to the original source code of application – manually

during the development of software [6], [7] or automatically

during the compilation of program [8], [9]. They enable a

system to tolerant software faults induced by the interaction

between radiation and hardware components of the system.

When the faults occurs, they provide a mechanism to the

software to prevent system failure from occurring. Software-

based radiation protection provides services by typically using

variable duplication, control sums and redundancy at instruc-

tion, source code blocks, procedure or entire program level.

This approach can be used in nuclear powers, aerospace, health

care or telecommunication.

According to this description, program not only has to

satisfy functional specification, but also has to use special

algorithms to monitor functionality, detect, signal and correct

hardware errors. It is a strictly software approach, it can be

implemented either in a source code written in high level

programming language or assembler. It could be used with

unhardened, commercial of-the-shelf components [10].

Two types of protection algorithms can be distinguished:

• data protection algorithms,

������������	 
�����	 �� 
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� ��

�������	
 � �
�
 �� �����
���
 �� ���������
������ � �����
�� �������� ���	����� ��� ����
� �� !�"#



• control flow checking algorithms [11]

Algorithms belonging to the first category are described in

next parts of this paper, while the second type algorithms at

this moment are beyond the scope of our interest.

III. HARDENING THE DATA

A. State of The Art

Several software methods for hardening a system against

faults affecting the data were developed. In most cases, they

exploit instruction and information redundancy and are based

on program modifications. Redundancy can be introduced at

four levels of granularity: instruction, instruction block, proce-

dure and program. At the instruction level individual operation

called master instruction is duplicated and so called shadow

instruction is introduced. Both sets of source code are executed

and results are compared. In the case of inconsistency, appro-

priate error recovery function must be executed. In second

level of granularity, selected parts of program i.e. basic blocks

determined in program source code are duplicated. With the

procedure level duplication, results of duplicated procedures

are compared. In last approach, outputs of two copies of an

entire program are compared in order to detect possible faults.

Original program and its copy can be executed concurrently or

one after another depending on available hardware resources.

In this paper only duplication on instruction-level will be taken

into consideration.

First of presented protection algorithm belongs to the High

Level Instruction Duplication (HLID) group [12]. This method

is based on data and instruction redundancy and covers the set

of source code transformation that follows three fundamental

rules:

• every variable in program must be duplicated,

• every write operation has to be performed on both, copies

of the variable,

• after each read operation on variable, checking for con-

sistency has to be done. In the case of inconsistency an

appropriate error recovery procedure has to be executed.

This basic rules have to be applied not only to statements

like assignments or arithmetical operations but also for ev-

ery procedure call in order to protect passed parameters as

well as returned value. Method can be used with high level

source code, but it does have the disadvantage of introducing

large number of additional code, in particular conditions and

brunches.

Second solution to protect microprocessor-based system

against transient error is called Error-Detection by Duplicated

Instructions (EDDI)[13] and belongs to the Assembler-Level

Instruction Duplication group. Every instruction in assembler

source code is duplicated, different set of registers must be

used in both operations. In the case of store or conditional

branch instruction, appropriate registers are compared and

in the case of data inconsistency error handler procedure

is invoked. The store is an instruction that store the value

of variable in memory. Additionally, to increase program

efficiency, several instruction scheduling algorithms can be

used. The main disadvantage, apart from increase in the code

size and lost of performance, is necessity to the assembler level

implementation. For that reason, method is target-dependent

and must be separately adopted for different processor fami-

lies.

B. Theoretical Background

The following subsection presents a number of definitions

essential for understanding proposed new data hardening al-

gorithm.

Definition 1: A basic block (node in control flow graph)

is a maximal sequence of consecutive instructions with the

properties, that flow of control can only enter the basic block

through the first instruction and will leave the block without

halting or branching. A recovery basic block is a modified

version of standard basic block, where function call statement

is boundaries for block and jump instructions together with

function call constitute separate type of block called the jump
block.

Definition 2: Control flow graph is a directed graph where

nodes correspond to the basic blocks and edges correspond to

control transfers between basic blocks. In the flow graph, two

nodes have special properties. Entry is a point where procedure

starts, thus, it is node with no predecessor. Exit is a point where

procedure exits, therefore, it is a node with no successors [14].

Recovery control flow graph is a control flow graph where

nodes are recovery basic blocks and jump blocks. Example of

recovery control flow graph is presented in Fig. 1.

Fig. 1. Example of control flow graph and recovery control flow graph

Definition 3: A variable or a temporary is said to be defined
when it is assigned a value, that is, when the variable or

temporary is a destination of instruction. A variable is said

to by used when it appears as a source operand in instruction.

The last use of a variable is a program point or instruction

�� ���������� ��� ���������� ��
��	�� 	���	 �
�	�
�������� �� ���!	� ����� ����� ������ 
���!����� �	!����"
�



where the variable is used for the last time in the program or

used for the last time before is it redefined. The live range
of a variable starts from its definition and ends at its last use.

A variable is said to be live during its live range [15]. An

example of live range is presented in Fig. 2.

Fig. 2. An example sequence of source code and appropriate variables live
ranges.

Definition 4: Lets take into consideration two instructions

I1 oraz I2. The instruction I2 is dependent on I1 if and only

if there is a path in the flow graph from I1 to I2 and the

instructions might reference the same memory location [16].

Four types of dependence can be distinguished:

• The dependence is true dependence if I1 is a store

operation and I2 is a load operation,

• The dependence is an antidependence if I1 is a load

operation and I2 is a store operation,

• The dependence is an output dependence if both instruc-

tions are store operations,

• The dependence is an input dependence if both instruc-

tions are load instructions

IV. RECOVERY INSTRUCTION DUPLICATION

Recovery instruction duplication (RID) algorithm presented

in this paper is combination of both earlier introduced ap-

proaches. On one hand, program transformations are imple-

mented in the high level source code, similarly to the High

Level Instruction Duplication method. On the other hand, data

consistency checking is performed only if additional condi-

tions are fulfilled, like in the Error-Detection by Duplicated

Instructions algorithm.

RID method is based on backward recovery approach [17].

It attempts to return the system to a error-free state by

rolling back or restoring the system to previously saved

correct conditions. System states are recorded at the recovery

checkpoints selected during the source code compilation. In

the case of error detection, the system state is restored to

last saved point and program execution is continued from

the checkpoint. Algorithm is implemented at the recovery

basic blocks level, therefore checkpoints are introduced to

the source code at the beginning of each block and data

consistency checking is performed at the end of each block,

see Fig. 3. Original instructions are duplicated and so called

shadow instructions are introduced to program. Results of

computation of both copies of variables that are live at the

end of recovery basic block, are compared and in the case

of data inconsistency, previous state of each of variable is

Fig. 3. Location of checkpoint and data consistency checking procedures in
recovery basic block

restored and recovery mechanism is executed. Copy of local

variables required to perform rollback procedure are stored

in the one-dimensional array called the recovery array. To

increase reliability of algorithm, storage area is additionally

guarded by Array Protection Algorithm, described in details

in [8] and [9]. At the end of block, consistency of backup

copies is checked and contents of array is updated. Dead

variables are removed, new live variables are inserted. The

size of recovery array is equal to the maximum number of live

variables existing in parallel at the beginning of the recovery

blocks with properties that next use is inside block. Therefore

advanced data flow analyze is required. For example array size

for source code presented in Fig. 2 is zero and in Fig. 4 is

one. Example implementation of RID algorithm is presented in

Fig. 4. An example implementation of Recovery Instruction Duplication
algorithm. On the left side – input source code with marked variables live
ranges and recovery basic block boundaries, on the right side – source code
after algorithm implementation.

Fig. 4. Variable a, b and c are live at the beginning of recovery

basic block. However, only b has to be stored in recovery array

because first use of variable a and c is after new definitions in

block. Based on dependency analyze one can deduce that the

������������	 
�����	 �� 
�����	��������� ��� ��
����� �������� ��	� �� ��� �� ���� �#



rest of instruction depends on the definition of variable b that

is located outside of currently processed block. Additionally,

informations about dependencies between instructions can be

used to select minimal group of variable stored into recovery

array. Functions: store, load and remove are responsible for

adding, reading and deleting specified variable from storage

area with the use of Array Protection Algorithm approach.

Variable b is dead outside of the block, therefore it must be

removed from recovery array. On the other hand, z and c
are new live variables and consequently they are inserted into

storage area. Every instructions are duplicated and at the end

of block, consistency of live variable – z and c – is checked.

In the case of difference between the copies, original values

of input variables are restored – in analyzed example there is

only one variable b – and instructions in block are executed

ones again. Variables live between several blocks are stored

and protected into recovery array.

V. CONCLUSIONS

Recovery Instruction Duplication algorithm, presented in

this paper, represents alternative approach to the problem

of local variable protection. The main difference between

Recovery Instruction Duplication and High Level Instruction

Duplication algorithm is fact, that in first approach value

consistency checking is performed only for limited set of

variables. This feature is very important if algorithm is im-

plemented at intermediate representation of source code used

by compiler. Representation like three-address code allows to

use in one statement assignment and one additional operator

with maximum two arguments. Therefore, several temporary

variables for intermediate computation results must be intro-

duced. In most cases, temporaries are available only in one

block of source code. Consistency checking performed for

every temporal variable will significantly increase the size

of program source code. In RID algorithm temporaries are

protected only if they are used outside of one recovery basic

block. In both approaches every instructions are duplicated

and operations are performed on two sets of variables.

Algorithm RID has been adopted to implementation in

source code written in high level programming language. For

that reason and in contrast to Error-Detection by Duplicated

Instructions, it is independent on the targeted hardware archi-

tecture. In both approaches consistency checking is postponed,

in EDDI algorithms it is performed only for operations that

write data to memory, in RID it is done only for live variable.

The main drawbacks of presented method are increase of a

final code size and a decrease of program efficiency. Both dis-

advantages result from additional operations like comparisons

and instruction duplication inserted into program to increase

reliability of the system. Nevertheless, this is characteristic

feature of every algorithms based on the redundancy. Ad-

vanced data flow and control flow analyze can be the source

of information that allows to decrease this negative influence

on protected program.

Presented algorithm can be treated as a form of temporal

redundancy. In the case of error, the same source code is

executed ones again. Simple correction of data and reuse of the

same software can overcome transient faults induced by the

radiation. On the other hand, temporal redundancy introduce

unpredictable delays to the application. Therefore applications

with hard real-time constrains are not good candidates for this

solution.

ACKNOWLEDGMENT

The research leading to these results has received fund-

ing from the European Commission under the EuCARD

FP7 Research Infrastructures grant agreement no. 227579

and Polish National Science Council Grant 642/N-TESLA-

XFEL/09/2010/0.

The authors are a scholarship holders of project entitled

”Innovative education ...” supported by European Social Fund.

REFERENCES

[1] J.F. Ziegler, “Terrestrial cosmic ray intensities,” IBM J. Res. Dev.,
vol. 42, no. 1, 1998.

[2] S.E. Michalak and K.W. Harris and N.W. Hengartner and B.E. Takala
and S.A. Wender,, “Predicting the number of fatal soft errors in los
alamos national laboratory’s ASC Q supercomputer,” IEEE Transactions
on Device and Materials Reliability, 2005.

[3] National Aeronautics and Space Administration, NASA Thesaurus vol.1,
2007. [Online]. Available: http://www.sti.nasa.gov/thesfrm1.htm

[4] R. C. Baumann, “Soft errors in advanced semiconductor devices — part
I: the three radiation sources,” Device and Materials Reliability, IEEE
Transactions on Volume 1, Issue 1, 2001.

[5] ——, “Radiation-induced soft errors in advanced semiconductor tech-
nologies,” IEEE Transactions on Device and Materials Reliability, Vol.
5, No. 3,, 2005.

[6] M. Rebaudengo and M. Sonza Reorda and M. Violante, “A new approach
to software-implemented fault tolerance,” IEEE Latin American Test
Workshop, vol. 40, pp. 433–437, 2002.

[7] M. Rebaudengo and M. Sonza Reorda, “Evaluating cost and effective-
ness of software redundancy techniques for hardware errors detection,”
FTCS-28, The 28th Annual International Symposium on Fault-Tolerant
Computing, June 23-25, Munich (Germany), pp. 88–89, 1998.

[8] A. Piotrowski and D. Makowski and G. Jabłoński and S. Tarnowski and
A. Napieralski, “Hardware fault tolerance implemented in software at
the compiler level with special emphasis on array-variable protection,”
MIXDES 2008 - Mixed Design of Integrated Circuits and Systems, 19-21
June, Poznan (Poland), 2008.

[9] A. Piotrowski and D. Makowski and G. Jabłoński and A. Napieralski,
“The automatic implementation of software implemented hardware
fault tolerance algorithms as a radiation-induced soft errors mitigation
technique,” Nuclear Science Symposium, Medical Imaging Conference
and 16th Room Temperature Semiconductor Detector Workshop23-27
June, Dresden (Germany), 2008.

[10] A. Piotrowski and D. Makowski and Sz. Tarnowski and A. Napieralski,
“Radtest - Testing board for the software implemented hardware fault
tolerance research,” MIXDES 2007 - Mixed Design of Integrated Circuits
and Systems, June 21-23, Ciechocinek (Poland), 2007.

[11] O. Goloubeva and M. Rebaudengo and M. Sonza Reorda and M.
Violante, “Soft-error detection using control flow assertions,” 18th IEEE
International Symposium on Defect and Fault Tolerance in VLSI Systems
(DFT’03), p. 581, 2003.

[12] ——, Software-Implemented Hardware Fault Tolerance. Springer
Science+Business Media, LLC, 2006.

[13] N. Oh, “Software implemented fault tolerance,” Ph.D. dissertation,
Stanford University, 2000.

[14] S. Muchnick, Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

[15] Y. N. Srikant and P. Shankar, The Compiler Design Handbook: Opti-
mizations and Machine Code Generation. CRC, 2001.

[16] R. Morgan, Building an Optimizing Compiler. Digital Press, 1997.
[17] L. L. Pullum, Software fault tolerance techniques and implementation.

Artech House, Inc., 2001.

�$ ���������� ��� ���������� ��
��	�� 	���	 �
�	�
�������� �� ���!	� ����� ����� ������ 
���!����� �	!����"
�


